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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Air temperature increased 1.14 ◦C dur-
ing 2000–2019 with clear warming 
trend in Peninsular Malaysia. 

• Significant increasing concentrations of 
O3 (+39.5 %) and PM10 (+16.4 %) were 
observed. 

• High correlation between climate 
change and air pollution makes CCA 
simulations highly feasible. 

• Atmosphere warming 2 ◦C increases O3 
and PM10 concentration by 22 % and 78 
% compared to 2000 levels.  

A R T I C L E  I N F O   

Guest editor: Umesh Chandra Dumka  

Keywords: 
Global warming 
Temperature 
Ozone 
Canonical correlation analysis 

A B S T R A C T   

Climate change is thought to influence the composition of atmospheric air, but little is known about the direct 
relationship between these variables, especially in a hot tropical climate like that of Malaysia. This work sum-
marizes and analyzes the climate state and air quality of Peninsular Malaysia based on selected ground-based 
observations of the temperature, precipitation, relative humidity, wind speed, wind direction and concentra-
tions of PM10, O3, CO, NO2, and SO2 over the last 20 years (2000–2019). The relationship between the climate 
state and air quality is analyzed using the Pearson correlation and canonical correlation analysis (CCA) methods 
is employed to predict the degree of change in the future air quality under different warming scenarios. It is 
found that the Peninsular Malaysia mainly experienced strong precipitation in the central and mountainous 
regions, while air pollutants are primarily concentrated in densely populated areas. Throughout the period of 
study (interannual, monthly, and diurnal time series analyses), Peninsular Malaysia became warmer and drier, 
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with a significant increase in temperature (+4.2 %), decrease in the relative humidity (− 4.5 %), and greater 
fluctuation in precipitation amount. The pollution conditions have worsened; there has been an increase in the 
PM10 (+16.4 %), O3 (+39.5 %), and NO2 (+2.1 %) concentration over the last 20 years. However, the amount of 
SO2 (− 53.6 %) and CO (− 20.6 %) decreased significantly. The analysis of the monthly variation shows a strong 
bimodality of the PM10 and O3 concentrations that corresponds to the monsoon transition. Intensive diurnal 
fluctuations and correlations are observed for all the variables in this study. According to the CCA, the air quality 
factors are strongly correlated with meteorological factors; in particular, the CO, O3, and PM10 concentrations 
interact strongly with the air temperature. These findings show that the future air quality in Peninsular Malaysia 
has high possibility to deteriorate under warming condition.   

1. Introduction 

World Health Organization (WHO) reports indicate that outdoor air 
pollution was estimated to have caused 4.2 million premature deaths 
worldwide in 2016, and 91 % of these early deaths happened in low- and 
middle-income countries, with the majority occurring in Southeast Asia 
and the Western Pacific (WHO, 2021). Climate change is projected to 
further lower the air quality in polluted areas because of negative 
changes in air pollution meteorological processes (Intergovernmental 
Panel on Climate Change (IPCC), 2014). The Intergovernmental Panel 
on Climate Change (IPCC) has reported that global average tempera-
tures have increased by about 1.1 ◦C since pre-industrial times and that 
most of the warming observed over the past 50 years can be attributed to 
human activities (IPCC, 2021). A rise in temperature can change the 
dynamics of the air composition in several ways. One key mechanism is 
the increase in the chemical reactions in the atmosphere that occur at 
higher temperatures, which can lead to increased levels of air pollutants, 
including ozone (O3) and particulate matter (Seinfeld and Pandis, 2016). 
Another important mechanism is the release of greenhouse gases from 
various sources, including permafrost, wetlands, and the ocean (IPCC, 
2021; Schuur et al., 2013). 

Under the background of obvious global climate change, there is a 
growing interest in studying how climate change and its consequences 
for air quality play out locally, particularly in Malaysia, which experi-
ences a tropical wet climate (Tang, 2019). Malaysia is a Southeast Asian 
country divided into two sections by the South China Sea: Peninsular 
Malaysia and Borneo’s East Malaysia. Peninsular Malaysia, which ac-
counts for 40 % of Malaysia’s total land area, is where the major cities 
are concentrated. The climates of Peninsular and East Malaysia diverge 
because the climate of Peninsular Malaysia is directly impacted by the 
wind from continental Asia, while the climate in East Malaysia is much 
more affected by marine circulation. There are two monsoonal seasons 
due to the seasonal variation of the Intertropical Convergence Zone 
(ITCZ) and the related trade wind fields in the area (Sentian et al., 2019). 
The southwest and northeast monsoons have a strong influence on the 
yearly climatic variability. The southwest monsoon lasts from April to 
September, whereas the northeast monsoon lasts from October to 
March. In comparison to the northeast monsoon, which provides greater 
precipitation, the southwest monsoon has drier climate and less rainfall 
(Kwan et al., 2013). Two prominent interannual signals—the El Niño 
Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD)—and 
an intra-seasonal signal—the Madden-Julian Oscillation (MJO)—can 
cause significant variations in Malaysia’s climate and impact the air 
quality in the region, leading to droughts, floods, and other climate- 
related hazards, with increased air pollution levels during active 
ENSO, IOD, and MJO phases (Islam et al., 2018; Jud et al., 2020; Kuwata 
et al., 2021; Tangang et al., 2017; Xiao et al., 2022). The impact of 
climate on air pollution complicates air quality management efforts, 
especially for a developing country like Malaysia. Accurately under-
standing, mastering, and forecasting the patterns and characteristics of 
climate and air quality conditions are of great significance for disaster 
prevention, mitigation, adaptation, and the scientific planning of 
production. 

From 2000 to 2019, according to Malaysia’s Fourth Biennial Update 

Report (BUR 4), greenhouse gas (GHG) emissions have increased sub-
stantially for about 7 times. Excluding Land Use, Land-Use Change and 
Forestry (LULUCF), the energy sector was the leading source of emis-
sions, accounting for an average of 80 % of annual emissions from 2000 
to 2019. Numerous studies have shown that the emission of GHG warms 
the atmosphere and has a significant positive correlation with temper-
ature (Andrée et al., 2019; Mikhaylov et al., 2020; Neagu and Teodoru, 
2019). According to studies conducted in Peninsular Malaysia, a sig-
nificant warming trend has been observed in recent decades (Samma-
thuria and Ling, 2009; Suhaila and Yusop, 2018; Tangang et al., 2006; 
Wong, 2018). This rise in temperature has led to an increase in the 
frequency and intensity of precipitation events and more frequent floods 
(Mayowa et al., 2015; Ng et al., 2022). Many scientists have also studied 
and analyzed the air quality in Malaysia. Morrissey et al. (2021) found 
that, while the air quality in the Greater Kuala Lumpur region is 
improving, no level of air pollution can be considered acceptable. Long- 
term (1997–2015) PM10 pollution in Malaysia is decreasing at a slow but 
considerable rate (Sentian et al., 2019). Significant increases in O3 
concentrations were reported in Malaysia (Ahamad et al., 2020; Ismail 
et al., 2011). Malaysia has witnessed significant warming, rainfall 
anomalies, and a significant upward trend for O3 over the last two de-
cades, attracting considerable interest in the study of climate trends and 
their consequences, especially for air quality (Dominick et al., 2012; 
Halim et al., 2018; Malaysia, 2009; Suhaila and Yusop, 2018; Tang, 
2019). Empirical orthogonal function (EOF) analysis has been used in 
several studies to investigate the spatiotemporal patterns and variability 
of meteorological and air quality variables in the region (Juneng et al., 
2009; Khoir et al., 2022). Quantitative knowledge of how air pollution 
reacts to both global warming and variability at the regional scale could 
inform air quality planning in the future. 

This study aims to assess the relationship between long-term climate 
change and air quality conditions in Peninsular Malaysia and predict the 
future air quality under different temperature-rise scenarios. The first 
part of the study analyzes the climate and air quality in Peninsular 
Malaysia (henceforth referred to as the Peninsula) from 2000 to 2019. 
With this information, this study identifies the long-term relationships 
between climate factors and the variation of air quality variables 
through Pearson correlation analysis and canonical correlation analysis 
(CCA). Finally, this study predicts the future air quality under different 
temperature-rise scenarios using the machine learning-based CCA al-
gorithm. By analyzing historical data and projecting future trends, this 
study seeks to provide insights into the potential impacts of climate 
change on the air quality in the region and inform policy decisions 
aimed at mitigating these impacts. 

2. Data and methodology 

2.1. Site and data description 

The observational data are obtained from observatories in the 
Peninsular Malaysia, and they include the hourly temperature, relative 
humidity, wind speed, wind direction, the concentrations of particulate 
matter (PM10), ozone (O3), carbon monoxide (CO), nitrogen dioxide 
(NO2), and sulfur dioxide (SO2), and daily mean rainfall, resulting in a 
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total of 10 variables, ranging from 01/01/2000 to 12/31/2019. The 
study for year 2020 is excluded due to the inconsistencies of air quality 
and weather pattern due to short-term interference from the COVID-19 
condition (see Supplementary document: S6). The rainfall data are 
provided by 25 weather stations from the Malaysian Meteorological 
Department (MetMalaysia). The wind data are provided by 10 general 
weather stations of MetMalaysia from the Global Hourly - Integrated 
Surface Database (ISD). Other data are provided by the continuous air 
quality monitoring system (CAQMS) installed by the Department of the 
Environment (DOE). The data (except for the rainfall and wind data) 
from 2000 to 2016 are supplied by the Alam Sekitar Malaysia Sdn Bhd 
(ASMA) contractor. The data from 2017 to 2019 are provided by the 
Pakar Scieno TW Sdn Bhd (PSTW) supplier (the new contractor of the 
DOE). The selection of the 25 weather stations and 10 general stations 
was made according to the availability of long-term rainfall/wind data 
and to obtain a geographically even distribution across the Peninsula. 
Based on the principle of maximizing the use of data, 30 DOE stations 
(for temperature, relative humidity, and PM10) and 25 other stations (for 
O3, CO, NO2, and SO2) were chosen because they had 20 years of 
continuous air quality data and maintain positional consistency before 
and after 2017. Due to the characteristics of the data studied, which had 
a wide time range and multiple sites, in order to ensure the validity and 
representativeness of the data, only sites for which missing values make 
up <20 % of the data are selected. The spatial distribution of these 
stations is given in Fig. 1, and information on the data availability is 
presented in Table 1. By analyzing these variables, the past character-
istics of climate change and past air quality conditions in the Peninsula 
can be fully revealed. 

2.2. Meteorological and air quality datasets 

During the monitoring periods, all air quality monitoring stations 
were outfitted with continuous automated monitoring technology 
designed to collect and measure data continually. The schedules for 
calibration and upkeep included daily automatic calibration for all 
contaminants and monthly repairs. The data provided by the DOE for 
use here have undergone calibration and maintenance regimens devised 
in accordance with US Environmental Protection Agency standards 
(Ahamad et al., 2020). During the process of data provider conversion, 
although the measurement data went through a quality assurance and 
quality control process to ensure the accuracy and quality of the data, 
alterations in instrumentation and workflows may have resulted in 
discontinuities in the data before and after 2017. In the supplementary 
information (S1), the original data are displayed on a timing plot, and it 
can be clearly seen from this figure that there were cliff-like changes in 
the original data in 2017. To make up for the inconsistency of the data, 
this study combines and compares the data from ASMA and PSTW to 
CAMS global reanalysis (EAC4) data from 2017 (Inness et al., 2019), and 
the PSTW data are calibrated from 2017 to 2019. The EAC4 dataset was 
chosen because this dataset contains all the parameters required for this 
study and has surface concentration data that can be directly compared 
with ground-based observations. The detailed calibration and adjust-
ment process is presented in the supplementary information (S1). The 
calibrated data have better continuity with the ASMA data. The 
following research is based on the data after calibration. 

Fig. 1. Locations of the data used in this research, including continuous air quality monitoring system (CAQMS) stations from PSTW (yellow stars) and ASMA 
(orange circles), general stations for wind data from the ISD (purple triangles), and Malaysian meteorological department weather stations (blue squares). Note that 
stations in red circles lack air quality data concerning the concentrations of O3, CO, NO2, and SO2. 
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2.3. Methodology 

The air pollutant concentrations and variations of the meteorological 
variables were analyzed on annual, monthly, and diurnal scales. For 
precipitation, the daily observations were added together to provide 
monthly and yearly precipitation datasets. For other factors, hourly data 
were used for the computation of the diurnal variations, while monthly 
and yearly averaged data from hourly readings were used for the 
monthly and annual variations. The Pearson correlation was calculated 
across each variable to identify the level of correlation on yearly, 
monthly, and hourly scales. This allows a more detailed understanding 
of the correlation of one or more attributes with other attributes at 
different time scales, and it lays the foundation for subsequent research. 

Subsequently, the CCA procedure was used in the present study to 
reveal the degree of association between climate change factors and air 
quality factors. By increasing the Pearson correlation between linear 
combinations of two sets of variables, CCA provides a generic multi-
variate approach for studying correlations when both sets of variables 
are quantitative (Akbaş and Takma, 2005; Dattalo, 2014; Langworthy 
et al., 2021). Unlike other methods, it has the ability to linearly connect 
two distinct variables regardless of their units (Zhang et al., 2020). 
These linear projections may be thought of as reflecting elements of the 
data’s structure and may thus be beneficial for downstream prediction 
tasks. Although it is an extensively used statistical technique in many 
fields like social science, medical research, psychological research, and 
marketing analytics (Wang et al., 2020; Yang et al., 2019; Zhuang et al., 
2020), it is seldom employed in atmospheric science which is a good 
attempt in the paper (Bowo et al., 2020; Rana et al., 2018; Zhang et al., 
2020). Since the dimensionality of the dataset is relatively low, it is 
feasible to use CCA directly to identify the relationships between the 
climate data and air quality data, without the need for dimensionality 
reduction using EOF analysis. The model theory and calculation method 
of CCA are as follows. 

Two sets of variables X and Y are considered, where X is a set of 
meteorological variables that includes temperature, relative humidity, 
wind speed, wind direction, and rainfall data, while Y is a set of air 
quality variables that includes the concentrations of PM10, O3, CO, NO2, 
and SO2: 

X =

⎛

⎜
⎜
⎜
⎝

X1

X2

⋮

Xp

⎞

⎟
⎟
⎟
⎠
, Y =

⎛

⎜
⎜
⎜
⎝

Y1

Y2

⋮

Yq

⎞

⎟
⎟
⎟
⎠
, p ≤ q. (1) 

With these sets of variables, two sets of linear relations U and V are 
defined, where U contains the linear combinations of X, and V contains 
the linear combinations of Y: 

U1 = a11X1 + a12X2 + ⋯ + a1pXp,

U2 = a21X1 + a22X2 + ⋯ + a2pXp,

⋮

Up = ap1X1 + ap2X2 + ⋯ + appXp,

(2)  

V1 = b11Y1 + b12Y2 + ⋯ + b1qYq,

V2 = b21Y1 + b22Y2 + ⋯ + b2qYq,

⋮

Vp = bp1Y1 + bp2Y2 + ⋯ + bpqYq.

(3) 

In order to find the linear combination that maximizes the correla-
tion in each pair of Ui and Vj, the variance of Ui and Vj are defined as 
follows: 

var(Ui) =
∑p

k=1

∑p

l=1
aikailcov(Xk,Xl), (4)  

var
(
Vj
)
=

∑p

k=1

∑q

l=1
bjkbjlcov(Yk, Yl) (5) 

The covariance of Ui and Vj is then calculated as follows: 

cov
(
Ui,Vj

)
=

∑p

k=1

∑q

l=1
aikbjlcov(Xk,Yl) (6) 

The following method is used to evaluate the obtained CCA corre-
lation of Ui and Vj: 

ρ =
cov

(
Ui,Vj

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

var(Ui)var
(
Vj
)√ . (7) 

Hence, to maximize the correlation (ρ*
i ), a linear combination of X 

and Y that maximizes the abovementioned relationship is determined: 

ρ*
i =

cov(Ui,Vi)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(Ui)var(Vi)

√ . (8) 

There are generally two methods that can be used for this function 
optimization. The first is singular value decomposition (SVD), and the 
second is eigendecomposition. The results obtained by both methods are 
the same for the dataset, so the output of either of the methods can be 
used. With the CCA, the first mode of linear correlation is used to 
determine the variation in the future air quality due to abrupt changes in 
temperature following future global warming scenarios. 

In this study, the Pearson correlation and CCA (p < 0.001) 
computing process is carried out using the Scientific Platform Serving 
for Statistics Professional (SPSSPRO version 1.0.11) platform, which is a 
free online application (https://www.spsspro.com). The CCA prediction 
model is applied in Python with the scikit-learn library, a free and open- 
source Python machine learning package. It is a simple and effective tool 
for analyzing predictive data (Pedregosa et al., 2011). 

3. Results and discussion 

3.1. Interannual variation of climate and air quality 

Fig. 2 shows the interannual variation of the annual average tem-
perature, precipitation, relative humidity, wind speed, PM10, O3, CO, 
NO2, and SO2 from 2000 to 2019 in the Peninsula. The overall yearly 
mean temperature showed a steady upward trend, from 26.96 ◦C in 
2000 to 28.10 ◦C in 2019, which is consistent with the trend of global 

Table 1 
Data availability details for the climate and air quality variables.  

Variable Temperature Relative humidity PM10 O3 CO NO2 SO2 Wind speed Wind direction Rainfall 

Supplier ASMA/PSTW ISD MetMalaysia 
Station markers 

(Caption of Fig. 1) 
Orange circles / Yellow stars 
(Stations in red circles lack air quality data concerning the concentrations of O3, CO, NO2, and SO2) 

Purple triangles Blue squares 

Period 2000–2016/2017–2019 2000–2019 2000–2019 

Note: The full names and abbreviations of the air quality variables in the table are particulate matter (PM10), ozone (O3), carbon monoxide (CO), nitrogen dioxide 
(NO2), and sulfur dioxide (SO2). 
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warming. Strong fluctuation is observed in the amount of precipitation, 
and it can be clearly seen that the amplitude of the fluctuation is 
increasing over time. Although the rainfall amount seems to decrease, 
the fluctuation amplitude increases, indicating the intensification of 
extreme precipitation. The humidity decreases in the early 2000s, be-
comes stable, and then continues to decrease rapidly. The wind speed 
has a small interannual variation fluctuation of 2–4 years, and the 
overall change is small, with no significant trend. Long-term changes in 
climate factors such as the increase in temperature, the increase in the 
frequency of abnormally warm climate, and the slight decrease in pre-
cipitation have been recorded in previous studies (Hanif et al., 2022; 
Yatim et al., 2019). 

CO and NO2 have similar variation patterns; they increase in the 
early 2000s, hold relatively constant during the middle 10 years of the 
considered time period, and then decrease sharply. The concentration of 
PM10 rose until it peaked in 2006 (50.24 μg/m3), fell to a second small 
peak around 2015, and then rose rapidly. O3 seems to have an increasing 
trend like that of the temperature over the whole observation period, 
from its minimum value (15.25 ppb) in 2000 to its maximum value 
(21.28 ppb) in 2019; this is also consistent with the findings of Ahamad 
et al. (2020). Surprisingly, SO2 is one of the few air pollutants that has 
decreased dramatically over the past 20 years (− 2.94 ppb). This is 
possibly an unanticipated result of clean air measures, including the 
replacement of polluting coal-fired power plants with clean energy, as 
well as decreases in the sulfur content in gasoline and diesel, as other 
comparable studies have demonstrated (Cowern, 2018; Mohtar et al., 
2018). The interannual variation of the air quality factors is somewhat 

consistent with other studies in the Peninsula, although other studies 
have focused more on local, short-term data (Halim et al., 2018; Suris 
et al., 2022). 

Table 2 summarizes the overall changes in all variables between 
2000 and 2019 to present a general trend. Macroscopically, tempera-
ture, PM10, O3, and NO2 levels all increased, with the largest increase in 
O3 (+39.49 %), followed by PM10 (+16.4 %), compared to the 2000 
values. The relative humidity, precipitation, CO content, and SO2 con-
tent showed a decline, and SO2 fell the most; it dropped by 53.57 % 
compared with the value from 2000, followed by CO, which fell by 20.6 
%. Among all the parameters, the wind speed changes the least, with a 
change of only − 1.46 %. From the perspective of the standard deviation, 
the degree of dispersion of precipitation (216.78) is the largest, followed 
by CO (38.96), PM10 (1.72), and O3 (1.5). Among the air pollutants 
studied here, the sharp drop in the SO2 concentration should be noted. In 
the Peninsula, the main sources of SO2 emissions are power stations, 
ships, etc. (Mohtar et al., 2018). The reason for the decline in SO2 is 
mainly the government’s energy emission control and clean air policy 
requirements, so it is reasonable to believe that the decline in SO2 is 
mainly due to human intervention rather than climate change itself. 
Although PM10 had a slowly declining curve in the early 21st century, it 
has shown a clear upward trend in volatility in recent years. NO2 rose 
sharply after 2000, and gradually slowed down in 2006, showing a flat 
period. Although it has declined slightly recently, the overall trend is 
upward. O3 has been on an upward trend for 20 years; recent studies 
usually predict a negative impact of climate change on the O3 air quality 
(Fu and Tian, 2019). It is therefore worth mentioning that the emission 

Fig. 2. Interannual variability of yearly climate (mean temperature, relative humidity, precipitation, and wind speed; solid lines) and air quality (PM10, O3, CO, NO2, 
and SO2; dotted lines) over the observation period. 

Table 2 
Change in annual mean climate and air quality parameters between 2000 and 2019 over the entire Peninsula.  

Period (2000–2019) Temperature 
(◦C) 

Relative humidity 
(%) 

Rainfall 
(mm) 

PM10 (μg/ 
m3) 

Wind speed (m/ 
s) 

O3 

(ppb) 
CO 
(ppb) 

NO2 

(ppb) 
SO2 

(ppb) 

Mean (standard deviation) 27 (0.3) 78 (0.8) 2464 (217) 48 (1.7) 1.8 (0.1) 17 (1.5) 602 (39) 10 (0.4) 4 (0.9) 
Difference 1.1 − 3.6 − 454 7.2 − 0.03 6 − 125.6 0.2 − 2.9 
Percentage change from 

2000 
+4 % − 5 % − 18 % +16 % − 2 % +40 % − 20 % 2 % − 54 %  
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control policy has been effective for SO2 but not for PM10, NO2, and O3 
over the past 20 years. 

3.2. Heat map analysis of climate and air quality in the Peninsula 

To indicate the overall features of the variables in the Peninsula, 
Fig. 3 shows the spatial distributions of the yearly mean temperature, 
precipitation, relative humidity, and concentrations of PM10, O3, CO, 
NO2, and SO2 over the observation period. Heatmaps are drawn from 
north (top) to south (bottom) based on site locations. For specific station 
names and the corresponding locations, please refer to Fig. S4. 

From Fig. 3, it is obvious that the areas with large populations are 
prone to higher average temperatures, especially in the central-south 
regions. The mean temperature on the western side of the Peninsula is 
slightly higher than that on the eastern side. As time passes, we can 
clearly see a significant increase in the average temperature for most of 
the stations. The relative humidity has a different pattern. It can be seen 
from the figure that the places with high humidity are mainly concen-
trated in the central Peninsula and near the mountainous areas. The 
humidity is generally maintained at a high level; it is above 70 % at most 
of the stations. The fluctuation of rainfall and the precipitation fre-
quency can be seen throughout the whole Peninsula, and the average 
annual precipitation amount in mountainous areas is relatively large. 
Heavy rainfall occurs mainly around Taiping. The number of days with 
precipitation has a significant positive correlation with the amount of 
precipitation. This pattern can also be explained by the interactions 
between the topography and wind directions, land-sea interactions, and 
atmospheric circulation (Marzuki et al., 2021; Svensson et al., 2002). 
Overall, the data indicate a humid tropical rainforest climate in Penin-
sular Malaysia. 

Figs. 4 and 5 present the overall 20-year wind speed and direction in 
Peninsular Malaysia. From the wind speed heat map, it can be concluded 
that the average wind speed of the entire peninsula is very low, and the 
fluctuation range is between 1 m/s and 2.7 m/s. The average wind speed 
in the north is larger than that in the south, and the change in the wind 
speed with time is not obvious. This is consistent with previous findings 
that indicate that Malaysia is in a low-wind zone (Hanoon et al., 2022). 
From the wind rose diagram, the northeasterly wind generally controls 
the entire peninsula, the intensity of the northeast monsoon is greater 
than that of the southwest monsoon, and the wind speed in large cities 
tends to be lower. 

Long-term air pollution in Malaysia is characterized mostly by local 
emissions and transboundary pollution, particularly in metropolitan 
areas (Sentian et al., 2019). Along the western side of the Peninsula, the 
average concentration of PM10 is slightly larger than in the eastern part. 
The concentration of PM10 fluctuates severely, mainly from 30 to 75 μg/ 
m3. Large PM10 concentrations occur over the western sections where 
the big cities are located. This is consistent with the connection between 
larger populations and pollution. From 2002 to 2006 and during 2015, 
PM10 increased significantly. The high observed value in 2015 is mainly 
due to the fact that 2015 was an extreme ENSO year, and it was highly 
correlated with intensive biomass burning episodes in Southeast Asia 
(Islam et al., 2018; Samsuddin et al., 2018). We can see a highly tem-
poral correspondence between the mean temperature and the PM10 
concentration. 

From Fig. 3, the distribution of the air quality parameters is relatively 
location-dependent. The yearly mean concentrations of CO, NO2, and 
SO2 have similar regional distribution characteristics. In the middle 
region of the Peninsula, the concentrations of CO, NO2, and SO2 are 
relatively low and constant throughout the 20-year period. They also 
show a certain association with the locations of the cities and the pop-
ulation. Especially in the regions of Kuala Lumpur and Bukit Mertajam, 
the concentrations are high compared to those of the other regions. A 
small decrease in the CO and NO2 concentrations is revealed over time. 
In contrast, the decline in the SO2 concentration over time is very pro-
nounced, and especially in the early 2000s, the reduction was steep. 

The average concentration of O3 fluctuates all over the Peninsula. 
Compared with the other air pollutants studied in this paper, the tem-
poral and spatial variation characteristics of O3 are weaker, but a certain 
degree of urban agglomeration can still be seen. The O3 concentration 
generally increased, specifically after 2014, at most of the stations. This 
leads to the conclusion that the high amount of pollution in the Penin-
sula varies regionally and temporally. Peninsular Malaysia’s central area 
has the greatest pollution concentration (Sentian et al., 2019). 

The geographical distribution of air pollution concentrations obvi-
ously highlights urban agglomeration, which also indicates the degree of 
urbanization. Climate change raises numerous significant air-chemistry 
problems, and human urban activity is contributing significantly to the 
current rate of climate change (Mika et al., 2018). Other findings also 
revealed that economic expansion has a large positive influence on 
carbon emissions and air pollution (Ali et al., 2017; Dash et al., 2020). 
Therefore, regional climate change and air quality research is urgent, 
and paying attention to the balance between the process of urbanization 
and air quality governance is one of the key points that policymakers 
need to focus on. 

3.3. Monthly variation of climate and air quality 

This subsection aims to investigate the broad patterns of monthly 
variability in climate and air quality conditions across the Peninsular 
region. Fig. 6 shows the monthly variation of variables. Malaysia’s 
climate is divided into four episodes: the inter-monsoon periods in April 
and October, the southwest monsoon from May to September, and the 
northeast monsoon from November to March. The action of the 
monsoon has a great influence on the changes in the monthly patterns. 
The average monthly temperature reaches the highest value of the year 
in May (28.2 ◦C) and then decreases to the lowest value (26.8 ◦C) within 
the northeast monsoon period. SO2 has an analogous trend, forming a 
mountain-like shape; the peak is located around June and July. The 
precipitation shows an opposite monthly variation compared to O3 and 
at the same time presents a similar variation compared to the relative 
humidity. The largest amount of precipitation (332.2 mm) and humidity 
(66.9 %) coincide with the early northeast monsoon season, which is 
around November. Meanwhile, the lowest amount of precipitation 
(108.6 mm) and humidity (59.4 %) occur in February, when the rainy 
season ends. 

NO2 and CO both have a tri-peak form. They both peak in April, 
June/July, and September. The concentration of CO has two peaks that 
coincide with the two transition periods of the monsoon seasons at very 
close values, and so does the concentration of NO2, but with different 
magnitudes. The high peak is in April (11.3 ppb) and the low peak is in 
September (10.9 ppb). PM10 and O3 present strong bimodal distribu-
tions. Both have their first peak around February and March. The dif-
ference is that during the southwest monsoon, the PM10 peak reached 
the maximum PM10 value (54.82 μg/m3), and O3 experienced a smaller 
peak (18 ppb) compared to its first peak (20 ppb). 

The monthly variation of the wind speed is in good agreement with 
the monsoon variation. When the northeast monsoon prevails, the wind 
speed is high, and the monthly average wind speed can reach up to 2.02 
m/s. During the southwest monsoon period, the wind speed is relatively 
low. Winds are often mild and changeable throughout the two inter- 
monsoon months (Fig. 7). Because Malaysia is mostly a maritime 
country, the impact of land and sea breezes on the overall wind flow 
pattern is significant, especially on clear days (Hanoon et al., 2022). 

3.4. Diurnal variation of climate and air quality 

The diurnal variation of the variables is revealed in Fig. 8. Most of the 
variables show a conspicuous diurnal mode. The hourly average tem-
perature increases at 08:00 local time (LT), peaks around late noon 
(31.84 ◦C), and then decreases smoothly. The relative humidity has a 
similar pattern compared with PM10, CO, and NO2, but without the first 
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Fig. 3. (a) Yearly mean temperature, (b) PM10, (c) relative humidity, (d) CO, (e) NO2, (f) SO2, (g) O3, and (h) precipitation amount and days with precipitation from 
north (top) to south (bottom) over the observation period. 
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trough, creating a horseshoe shape. The wind speed, unlike the other 
parameters, has a mountain-like pattern, with a peak at 08:00–09:00 LT. 
Wind speeds are low and steady at night. 

PM10, CO, and NO2 have bimodal modes, with two peaks at around 
08:00–10:00 LT and 22:00–23:00 LT and troughs at around 05:00–06:00 
LT and 14:00–15:00 LT. The trend of SO2 is obviously different from 
those of the other factors. SO2 reaches its minimum value (2.1 ppb) at 
around 06:00 LT, and then sharply jumps to the maximum value (3.3 
ppb) at 10:00 LT; this is followed by a slight decrease and then an in-
crease in the afternoon and at night. By comparison, the regularity of the 
daily changes is much higher than that of the monthly and interannual 
changes. 

3.5. Correlation of climate and air quality 

In this study, Pearson correlation coefficients were calculated be-
tween each climate variable and each air quality variable, respectively, 
on year-to-year, month-to-month, and day-to-day time scales (Fig. 9). 
The Shapiro-Wilk test for normality was applied to all data (refer to 
Supplementary S3 for details), and the Pearson correlation coefficients 
are presented in Fig. 9. For interannual variation, the temperature is 
significantly positively correlated with O3 (0.99) and strongly negatively 
correlated with CO (− 0.79) and SO2 (− 0.77). On the other hand, SO2 
and CO both have strong negative correlations with O3. The humidity 
has strong positive (negative) correlations with CO (O3). The factors’ 
relationships for monthly changes are more prominent than those for 
annual changes. On a monthly scale, the temperature is negatively 
correlated with precipitation. O3 has a strong negative correlation with 
the relative humidity (− 0.91) and precipitation (− 0.86). NO2 is highly 
correlated with CO (SO2), with a coefficient of 0.92 (0.91). In terms of 
diurnal variation, prominent correlations among the factors are abun-
dant. The temperature and humidity are negatively correlated. Addi-
tionally, the temperature has a strong connection with O3 (0.98), as it 
does on an annual scale. PM10 is highly correlated with CO (0.91) and 
NO2 (0.83). O3 is negatively correlated with the relative humidity 
(− 0.98). NO2 and CO also have a high positive correlation. The numbers 
of significant correlations (≥0.7 or ≤− 0.7) for each time scale are 8 
(annual), 11 (monthly), and 8 (daily), respectively. It can be observed 
that when different time scales are focused on, the correlations undergo 
significant changes. 

The results concerning the linear relationship between climate 

change factors and air pollutant factors vary widely among previous 
studies, depending on the size of the region studied, the frequency of the 
observations, and the time horizon (Ismail et al., 2011; Lim et al., 2022; 
Miyama et al., 2020; Turalioglu et al., 2005; Suris et al., 2022). A pre-
vious study found that for some specific Malaysian stations, the tem-
perature had a positive connection with the PM10 concentration but a 
negative correlation with the relative humidity (Dominick et al., 2012). 
SO2 and NOx levels were negatively correlated with temperature 
throughout the summer and monsoon seasons but positively correlated 
with temperature during the pre- and post-monsoon seasons (Jaya-
murugan et al., 2013). However, in general, there is a positive correla-
tion between the air temperature and O3 content on large time scales. At 
elevated temperatures, O3 production accelerates and emissions of its 
natural components increase. The combination of high temperatures 
and feeble winds causes the atmosphere to stagnate. So, the air simply 
heats up and O3 levels can accumulate, which is also known as one of the 
“climate penalty” phenomenon (Chen et al., 2019; Fu and Tian, 2019; 
Porter and Heald, 2019). The remaining factors need to be compared 
under the corresponding regional and temporal conditions. The vari-
ables in this subsection exhibit a one-to-one correlation with each other, 
without any interaction or intervention from other parameters. The 
interactive correlation among the variables will be taken into account 
using CCA in the next subsection. 

3.6. CCA of meteorological variables and air pollution variables 

Based on the Pearson correlation analysis results for the wind speed 
performance (as depicted in Fig. 9), it can be inferred that the impact of 
the wind speed on the long-term annual average changes in air quality 
factors is negligible. Consequently, the influence of the wind speed has 
been excluded from consideration. Additionally, since the impact of 
precipitation was also found to be weak (refer to Supplementary S4 for 
details), the variables have been re-analyzed using CCA after the 
removal of the precipitation factor. The results of this analysis are pre-
sented in Tables 3–5 and Fig. 10. 

The relationships between the annual mean meteorological variables 
(Set X) and annual air quality variables (Set Y) (Table 3) were tested 
using CCA. The results (Table 4) showed a strong correlation between 
the two datasets (CCA: r = 0.994, p < 0.001), with 71.18 % of the 
variance represented in the model (eigen = 0.988, df = 10). 

From Table 4, it is observed that the first pair of canonical variables 

Fig. 4. Yearly mean wind speed from north (top) to south (bottom) over the observation period.  
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Fig. 5. Wind rose map of the surface hourly wind speed and wind direction from 10 general weather stations over the observation period.  
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was found to be significant after passing the significance test. The cor-
relation coefficient of the first pair of canonical variables is 0.994. The 
subsequent analysis will be based on the first pair of canonical variables 
(X1, Y1), which are presented in Table 5, using the equations given 
below: 

X1 = − 0.998 T2+ 0.915 RH, (9)  

Y1 = − 0.489 PM10–0.995 O3 + 0.799 CO+ 0.029 NO2 + 0.753 SO2. (10) 

The proportions of variance explained by X1 and Y1 are given in 
Table 6. The canonical variable X1 explains 48.694 % of the information 
of the indicators in set Y, and it explains 91.676 % of the information of 
the indicators in set X. The canonical variable Y1 explains 90.621 % of 
the information of the indicators in set Y and 48.134 % of the infor-
mation of the indicators in set X. Fig. 10 summarizes the CCA, with 
meteorological variables accounting for 71.182 % of the information of 
the air quality factors. The value here is notably smaller than those in 
Table 4 and Table 6 because all the pairs of canonical variables are 
considered in the calculation to obtain an overall linear relationship 
value between the climate change factor group and the air quality factor 
group. Compared with the results from the CCA with precipitation 
(Supplementary S4), the interpretation ratio of meteorological factors to 
air quality factors improved by about 10 %. This result shows that for the 
long-term interannual variability of these factors, changes in tempera-
ture and humidity can better predict the degree of future changes in air 
quality variables. 

3.7. CCA of regional meteorological variables and air quality variables 

From the heatmap in Subsection 3.1, it is clear that the air quality 
distribution is relatively location-dependent, with certain regions hav-
ing a much higher pollution level. Hence, the CCA is conducted on a 
regional level to determine the level of correlation between the climate 
and air quality. Taking states as the main basis for distinction, the states 
of the Peninsula are restructured into eight regions, as shown in Fig. 11. 
The detailed region categorization is shown in Table S5. 

An independent CCA study was conducted for each region using the 

station data within the region. Similar to the previous subsection, only 
the CCA results without precipitation data are shown here. The results 
with precipitation data can be found in Supplementary Information S5. 
The detailed calculation results are given in Table 7. 

According to Table 7 (Fig. 11) and Table S12 (Fig. S6), the proportion 
of variance explained between the climate sets and air quality sets im-
proves by an average of 17.2 % after the precipitation data are excluded, 
especially in the Melaka and Negeri Sembilan regions. Since the ur-
banization process of the west coast of Malaysia is stronger than that of 
the east coast, the degree of climate change and air quality pollution are 
more obvious in densely populated areas (Fig. 3). Due to its special 
geographical location, the west coast area has often been affected by 
biomass burning from the Indonesian Sumatra and Kalimantan regions, 
and the temperature, humidity, and air quality are also closely related to 
the burning situation (Islam et al., 2018; Samsuddin et al., 2018). Thus, 
based on the graphical comparison, the changes in the air quality on the 
west coast are more sensitive and more closely related to climate change 
than those in the east coast areas, and the predictability is also better. 
However, the regional canonical correlations of the two cases are not 
very different. 

3.8. CCA projection of air quality variables for temperature-rise scenarios 

The average worldwide temperature in 2019 was 1.1 ◦C higher than 
the 1850–1900 average, which is assumed to reflect pre-industrial cir-
cumstances (Kappelle, 2020). To better predict the air quality change 
caused by the temperature change, we used the climate factors without 
the precipitation data as the dependent variables and carried out the 
prediction and simulation of the air quality factors using a machine 
learning-based algorithm from the scikit-learn library in Python. The 
temperature is increased by 0.4 ◦C and 0.9 ◦C, respectively, as a trigger, 
and the humidity remains unchanged; 2019 is set as the base year, and 
the predicted values of the air quality factors are obtained. The results 
are given in Table 8. 

With a temperature increase of 0.4 ◦C (based on 2019 data, the 
relative humidity remains the same), the concentrations of PM10, O3, 

Fig. 6. Monthly variability of mean monthly climate (mean temperature, relative humidity, precipitation, and wind speed; solid lines) and air quality (PM10, O3, CO, 
NO2, and SO2; dotted lines) over the observation period. 
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Fig. 7. Seasonality of the monthly wind speed and wind direction over the observation period.  
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and NO2 all present upward trends. Compared with the 2019 value, O3 
increased the most (+14.3 %), and CO and SO2 decreased. When the 
temperature increased by 0.9 ◦C, the values of the above air variables 
changed more strongly; the increase in the O3 concentration nearly 
doubled (+27.6 %) compared with the previous scenario, and the 

reduction in the carbon monoxide concentration more than tripled 
(− 18.8 %). Although it is against common sense for the SO2 concen-
tration to drop to a negative number in the predicted results, we can 
draw the conclusion that SO2 will decrease rapidly in the future. The 
coefficient of determination (R2 score) of the CCA model for these 
datasets is 0.47, which indicates that the model is expected to predict 
future samples with moderate effectiveness. However, we can still get a 
glimpse of the future from the simulation results; this CCA algorithm’s 
simulation outcomes are also roughly consistent with the findings of 
earlier studies. The concentration of nitrogen dioxide increases under 
different carbon emission pathways (Lim et al., 2022), and in the 
Representative Concentration Pathway RCP4.5 scenario, the 

Fig. 8. Diurnal variability of mean hourly climate (mean temperature, relative humidity, precipitation, and wind speed; solid lines) and air quality (PM10, O3, CO, 
NO2, and SO2; dotted lines) over the observation period. 

Fig. 9. Pearson correlation coefficients of the mean temperature, precipitation, relative humidity, wind speed, PM10, O3, CO, NO2, and SO2 over the observation 
period. (Correlation values are shown only for those pairs of variables that passed the significance test at the 99 % confidence level.) 
*: The true value is − 0.999, which is shown as − 1 in the image because it has been rounded to two digits. 

Table 3 
Datasets of climate variables and air quality variables.  

Set X (meteorological) Temperature Humidity    

Set Y (air quality) CO O3 SO2 NO2 PM10  

Table 4 
Canonical correlation analysis results.  

Canonical variables Canonical correlation Proportion of variance explained Eigen values Wilks Degree of freedom F P 

Pair 1 0.994 71.18 0.988 0.007 10 28.692 <0.001  
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concentrations of O3 and PM10 also increase (Mika et al., 2018). A slight 
change in temperature will have a dramatic impact on the concentra-
tions of the air quality factors. In the event of further temperature in-
creases in the future, we should pay more attention to the concentrations 
of O3, PM10, and NO2, as these air pollutants are more sensitive to 
temperature. 

In terms of chemistry processes, the positive surface O3-temperature 
association is primarily driven by the fact that an increase in tempera-
ture boosts natural emissions and increases O3 chemical synthesis at 
high NOx levels (Gu et al., 2020; Lu et al., 2019). The drop in SO2 is 
mostly attributable to the government’s energy emission control and 
clean air policy regulations rather than climate change (Cowern, 2018; 
Ukhov et al., 2020). According to National Center for Atmospheric 
Research (NCAR) research reports, during a heat wave, the intense heat 
and stagnant air increase the amount of O3 pollution and particle 
pollution. Drought conditions may also exacerbate forest fires and hence 
contribute to particulate pollution in the atmosphere. NO2 mostly enters 
the atmosphere due to fuel combustion and human emissions. NO2 and 
other NOx may react with other airborne molecules to produce both 
particulate matter and O3. The long-term growth in CO levels seems to 
have ceased and reversed over the last several years. This might have 
occurred for a variety of reasons, such as increased CO removal from the 
environment and enhanced combustion efficiency in industry. The 
increased use of natural gas in recent years and regional decreases in 
human-caused CO emissions have reduced atmospheric CO levels 
(Campbell et al., 2018; Gratz et al., 2015; WHO, 2021). The NO2 and CO 
content in the air directly responds to temperature changes, although 
the chemical process is very weak; changes in the NO2 and CO content 

are mainly related to the control of emissions and the intervention of 
human factors. 

Since CCA is based on pure linear analysis, it can only reflect the 
association between variable groups to a certain extent; this has limi-
tations, especially due to the non-linearity of chemical processes. 
Therefore, to better analyze the correlation between the two sets of 
variables, and to predict the degree of change in the air quality factors 
based on changes in the climate factors, numerical model simulation is 
an indispensable method that must be applied. In subsequent research, it 
is necessary to carry out regional climate and air quality research using a 
numerical chemical climate prediction model to resolve the physical and 
chemical responses of air pollutants to changes in climate conditions. 

4. Conclusions 

In this study, temperature, relative humidity, precipitation, wind 
speed, wind direction, CO, NO2, O3, SO2, and PM10 ground-based 
observational data have been used to assess the temporal and spatial 
climate and air quality characteristics in the period from 2000 to 2019 in 
Peninsular Malaysia. Using Pearson correlation analysis and canonical 
correlation analysis (CCA), this study identifies the long-term relation-
ships between climate factors and the variability of air quality variables. 
Using the CCA algorithm based on machine learning, this study forecasts 
the future air quality under various scenarios of temperature rise. The 
following summarizes the main findings of this article in bullet form.  

• The study reveals a clear warming trend in the climate, with an 
upward trend in the temperature (+1.14 ◦C) and a slight decrease in 
the relative humidity, while the precipitation showed significant 
fluctuations that increased in amplitude.  

• The annual average O3 concentration showed a steady increase year 
by year (+39.5 %), while the SO2 concentration showed a steady 
decline (− 53.6 %). 

• The high correlation between climate variables and air quality var-
iables provides an important basis for predicting future changes in 

Table 5 
Canonical loadings of set Y and set X, respectively.   

X1 

Temperature (T2)  − 0.998 
Humidity (RH)  0.915    

Y1 

O3  − 0.995 
CO  0.799 
SO2  0.753 
PM10  − 0.489 
NO2  0.029  

Fig. 10. CCA map of the yearly mean temperature, relative humidity, and PM10, O3, CO, NO2, and SO2 concentrations over the observation period.  

Table 6 
Proportion of variance explained by the first pair of canonical variables.   

Set X Set Y 

X1  91.676  48.694 
Y1  48.134  90.621  
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the air quality due to climate change, which makes CCA projection a 
feasible way to forecast future air quality.  

• According to the CCA results, there is a strong correlation between 
climate and air quality; in the state of Selangor, the sensitivity of the 
air quality factors to meteorological factors is particularly strong.  

• A 2 ◦C increase in temperature caused an increase in PM10 (+22.1 
%), O3 (+77.9 %), and NO2 (+10 %), while CO (− 35.5 %) and SO2 
(− 116.4 %) decreased.  

• Slight changes in temperature have a significant impact on air 
quality, and further temperature increases in the future require 

greater attention to be paid to the concentrations of O3, PM10 and 
NO2.  

• The long-term data analysis and characterization of climate and air 
quality will assist policymakers and the relevant authorities in 
adapting measures and policies to future conditions. 
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