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• Air quality changes during the COVID-
19 in YRD region are analyzed.

• TheWRF-CAMxmodelling system is ap-
plied to investigate impact of lowered
human activities on air quality changes.
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ured out for policy implications for fu-
ture air pollution control.
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The outbreak of COVID-19 has spreaded rapidly across the world. To control the rapid dispersion of the virus,
China has imposed national lockdown policies to practise social distancing. This has led to reduced human activ-
ities and hence primary air pollutant emissions, which caused improvement of air quality as a side-product. To
investigate the air quality changes during the COVID-19 lockdown over the YRD Region, we apply the WRF-
CAMx modelling system together with monitoring data to investigate the impact of human activity pattern
changes on air quality. Results show that human activities were lowered significantly during the period: indus-
trial operations, VKT, constructions in operation, etc. were significantly reduced, leading to lowered SO2, NOx,
PM2.5 and VOCs emissions by approximately 16–26%, 29–47%, 27–46% and 37–57% during the Level I and Level
II response periods respectively. These emission reduction has played a significant role in the improvement of
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air quality. Concentrations of PM2.5, NO2 and SO2 decreased by 31.8%, 45.1% and 20.4% during the Level I period;
and 33.2%, 27.2% and 7.6% during the Level II period compared with 2019. However, ozone did not show any re-
duction and increased greatly. Our results also show that even during the lockdown, with primary emissions re-
duction of 15%–61%, the daily average PM2.5 concentrations range between 15 and 79 μg m−3, which shows that
background and residual pollutions are still high. Source apportionment results indicate that the residual pollu-
tion of PM2.5 comes from industry (32.2–61.1%), mobile (3.9–8.1%), dust (2.6–7.7%), residential sources
(2.1–28.5%) in YRD and 14.0–28.6% contribution from long-range transport coming from northern China. This in-
dicates that in spite of the extreme reductions in primary emissions, it cannot fully tackle the current air pollution.
Re-organisation of the energy and industrial strategy together with trans-regional joint-control for a full long-
term air pollution plan need to be further taken into account.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

At the end of the year 2019, the tragic coronavirus 2019 (COVID-19)
pandemic occurred (Tian et al., 2020; Wang et al., 2020a) which has
caused over 2.95 million global infections and 1931,000 deaths as of
this writing (28th April 2020). Moreover the pandemic has caused
enormorous economic and social disruption (Wang et al., 2020a). To
control the rapid spread of the disease to protect people's health,
China has enacted emergency response procedures, and required peo-
ple to stay at home instead of going out beginning from late January
2020 (Tian et al., 2020; Wang et al., 2020b), resulting in significant re-
duction in the number of vehicle kilometres travelled (VKT), industrial
operations, constructions, and even restaurants in operation, etc.
Human and industrial activities were reduced to essential or bare min-
imal only. As we know that these are general emission sources that
cause air pollution, especially during this particular winter season
(Zhang et al., 2019). Thus the air quality during COVID-19 in China is
much better than previous years in the same time period. The National
Aeronautics and Space Administration (NASA) had published statellite
imageries of the massive reduction in NO2 over China resulting from
the economic slow-down and the reduced human activities (NASA,
2020). Other analyses have similarly found that ground-based concen-
trations of key pollutants fell substantially across much of China
(Wang et al., 2020a; Wang et al., 2020b).

Yangtze River Delta (YRD) region is one of the major economic city-
clusters in Eastern China. The air pollution in the YRD region raises
much attention (Huang et al., 2019; Li et al., 2018; Li et al., 2019), espe-
cially during winter, when the meteorological conditions are
unfavourable, which usually causemore frequent air pollution episodes
than other seaons. In this study, the air quality changes due to the
lowered human activities during the COVID-19 are investigated to
quantify the level of air quality improvement attributable to different
aspects of human activities.

To understand the details of the air quality changes,we have divided
the whole period into four stages: Pre-lockdown (1st January to 23rd
January 2020); Level I response (roughly 24th January to 25th February
2020); Level II response (roughly 26th February to 31st March 2020)
and Level III response (31st March onwards, 2020). The China's Spring
Festival (Chinese New Year) is covered by Level I response period. Ac-
cording to the ‘National Emergency Response Plan for Public Emergen-
cies’ issued by China State Council, the level of early warning is based
on the degree of harm that may be caused by public emergencies, the
degree of urgency and development. It is generally divided into four
levels: Level I (particularly serious), Level II (serious), Level III (heavier)
and Level IV (general). On 24th January 2020, the YRD region entered
the first level of response, cities actively carried out epidemic preven-
tion and control measures, including the adoption of compulsory
measures in accordancewith the law to stop all large-scale mass events
such as bazaars and assemblies, etc. During Level I response period, the
public significantly reduced the number of people and vehicles in public
places, industrial enterprises, construction sites, catering enterprises
and other large-scale work stoppage and closure. After 2 months of
struggle, the number of new confirmed cases per day across the country
has dropped dramatically and more and more people are being cured
and discharged from hospital. As the situation of the epidemic im-
proved, on 25th February 2020, the emergency response level in
Anhui and Jiangsu provinces was downgraded from a primary response
to a secondary response. Zhejiang and Shanghai were adjusted on 2nd
March and 24th March, respectively. Secondary response period,
under the premise of good protective measures, the YRD cities allow
some industrial enterprises to resume work and resume production,
construction sites can be built; blanket cancellation of the village clo-
sures, citizens can rely on the health code and wear a mask to travel lo-
cally, road traffic flow gradually increased. Since 31st March, the YRD
region enters into Level III period, with most activities gradually
enetering into operation except schools, etc., of causewith strict protec-
tion measures. Here, we mainly foucus on the first three stages.

In this study, an integrated measurement-emission-modelling ap-
proach described in the next section including analysis of multi-
pollutant observations, backward trajectory and potential source contri-
bution analyses, estimates of pollutant emission reductions, and photo-
chemical model simulations are adopted to conduct a comprehensive
assessment of the impact of reduced human activity on air pollution re-
duction. We would like to achieve the following:

• To study the correlation between the substantial change of human
and industrial activites on the air pollution scenarios in YRD: pre-
lockdown, Level I response during lockdown, Level II response during
lockdown;

• To study the changes of the source contributions to these air pollution
scenarios which are related to local activity factors;

• To figure out sources of the residual pollution and investigate policy
implications for future air pollution control.

2. Methodologies

To assess the effectiveness of the various emissions reductions
linked with lowered human and industrial activities due to the
COVID-19 restrictions, emission reductions associated with those
limitations are calculated, and photochemical modelling is conducted
to determine the changes in PM2.5 attributed to specific emissions
reductions.

2.1. Measurements

The hourly ambientmass concentrations of criteria air pollutants in-
cluding SO2, NO2, CO, O3, PM2.5 and PM10 are downloaded from the real
time data published by the air monitoring data centre of Ministry of
Ecology and Environment of the People's Republic of China (http://
datacenter.mep.gov.cn). The meterological data are obtained from
both National Oceanic and Atmospheric Administration (NOAA)'s

http://datacenter.mep.gov.cn
http://datacenter.mep.gov.cn
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National Climate Data Center archive (http://www.ncdc.noaa.gov/oa/
ncdc.html) and the National Data Center of the Chinese Meteorology
Agency (http://data.cma.cn/).

2.2. Potential source contribution analysis

Potential source contribution factor (PSCF) analysis is applied in this
study to locate pollution sources using air mass trajectories (Duan et al.,
2019; Liu et al., 2019). It can be calculated for each 1° × 1° cell by divid-
ing the number of trajectory endpoints corresponding to samples with
factor scores or pollutant concentrations greater than specified values
by the number of total endpoints in the cell (Hopke and Zeng, 1989;).
Since the deviation of PSCF results can increasewith the raise of distance
between cell and receptor, a weight factorWij is adopted in this study to
lower the uncertainty of PSCF results, named weighted PSCF (WPSCF;
Hopke and Zeng, 1989; Polissar et al., 1999; Zhang et al., 2019). In this
study, the TrajStat modelling system is used to analyse potential source
contribution areas of PM2.5 in Shanghai of YRD during different periods
of the COVID-19 with the combination of Global Data Assimilation Sys-
tem (GDAS)meteorological data provided by theNCEP (National Center
for Environmental Prediction). This shows us the air mass transport
pathway during the three stages of lockdown.

2.3. Model setup

2.3.1. Model selection and parameter settings
In this study, theWRF-CAMx air quality numericalmodelling system

is used to evaluate the improvement in air quality resulting from the re-
ductions of human activities during COVID-19. For themesoscale mete-
orological field, we adopt the WRF model Version 3.4 (https://www.
mmm.ucar.edu/wrf-model-general), and the CAMx model Version 6.1
(http://www.camx.com/). The gaseous and aerosol modules used in
CAMx are the CB06 chemical mechanism (Yarwood et al., 2010) and
CF module, respectively. The aqueous-phase chemistry is based on the
updated mechanism of the Regional Acid Deposition Model (RADM)
(Chang et al., 1987). The WRF meteorological modelling domain con-
sists of three nested Lambert projection grids of 36 km - 12 km -
4 km, with 3 grids larger than the CAMx modelling domain at each
boundary. WRF is run simultaneously for the three nested domains
with two-way feedback between the parent and the nest grids. All the
three domains utilise 27 vertical sigma layers with the top layer at
Fig. 1.Modelling domain and locations of the n
100 hPa. For the CAMx modelling domain shown in Fig. 1, we adopt a
36-12-4 km nested domain structure with 14 vertical layers, which
are derived from the WRF 27 layers. The two outer domains cover
much of Eastern Asia and Eastern China, respectively, while the inner-
most domain covers the YRD region. The simulation period is from 1st
January to 31st March 2020, during which 1st to 5th January was
utilised for model spin-up. We focus on three stages: Pre-lockdown
(Jan 6 to Jan 24, 2020); Level I response (24th January to 25th February
2020) and Level II response (25th February to 31st March 2020) pe-
riods. We select four major cities including Shanghai, Nanjing, Hang-
zhou, and Hefei to study (shown in Fig. 1), which are capital cities of
the provinces in the YRD region.

Initial and boundary conditions (IC/BCs) for the WRF modelling are
based on 1° × 1° grids FNL Operational Global Analysis data that are ar-
chived at the GDAS. Boundary conditions toWRF are updated at 6-hour
intervals for D01. The Yonsei University (YSU) scheme (Hong et al.,
2006) is applied to parameterise the boundary layer processes; the
NOAH land surface scheme (Ek et al., 2003) is used to describe the
land-atmosphere interactions; the Purdue-Lin microphysics scheme
(Lin et al., 1983) is chosen to reproduce the cloud and precipitation pro-
cesses; the RRTM long-wave and Goddard Short-wave radiation
schemes (Chou et al., 1999; Mlawer et al., 1997) are adopted to refect
the radiation.

Anthropogenic source emission inventory for the YRD region is
based on a most recent emission inventory developed by our group.
Emissions for areas outside YRD in China is derived from the MEIC
model (Multi-resolution Emission Inventory of China (http://www.
meicmodel.org); anthropogenic emissions over other Asian regions
are from the MIX emission inventory for 2010 (Li et al., 2017). Biogenic
emissions are calculated by an updated version of the Model of Emis-
sions of Gases and Aerosols from Nature (MEGAN, v3.0, http://aqrp.
ceer.utexas.edu/projects.cfm). Sea salt emissions are simulated using
the OCEANIC pre-processor developed by Ramboll (http://www.camx.
com/download/support-software.aspx, last access on 17th April 2020).
We further develop a reduced emission inventory to account for the re-
stricted human activities due to COVID-19. Estimation of emission re-
ductions for each source sector are based on reported acitivity data
and our best estimates (see details in Section 3.4). The Sparse Matrix
Operator Kernel Emissions (SMOKE, https://www.cmascenter.org/
smoke, last access on 17th April 2020) model is used to process emis-
sions into model needed format.
ational observational sites (green triangle).

http://www.ncdc.noaa.gov/oa/ncdc.html
http://www.ncdc.noaa.gov/oa/ncdc.html
http://data.cma.cn/
https://www.mmm.ucar.edu/wrf-model-general
https://www.mmm.ucar.edu/wrf-model-general
http://www.camx.com/
http://www.meicmodel.org
http://www.meicmodel.org
http://aqrp.ceer.utexas.edu/projects.cfm
http://aqrp.ceer.utexas.edu/projects.cfm
http://www.camx.com/download/support-software.aspx
http://www.camx.com/download/support-software.aspx
https://www.cmascenter.org/smoke
https://www.cmascenter.org/smoke


Fig. 2. Scatter plots of observed and simulated PM2.5 concentrations during pre-lockdown,
Level I and Level II response periods at 41monitoring sites over the YRD region (locations
are monitoring sites shown in Fig. 2).
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2.3.2. Model performance
Prior to evaluating the impact of the restricted human activities and

thus the reduced emissions, the performance of themodelling system is
evaluated to ensure to reasonably reproduce the observed meteorolog-
ical conditions and air quality levels. Statistical indices used for WRF
model evaluation include Mean Bias (MB), Correlation Coefficient
(R) and Root Mean Square Error (RMSE). Table 1 shows the summary
statistics for the comparisons of main meteorological parameters simu-
lated by theWRFmodel with observed data. Figs. S1(a) to (d) show the
comparisons of hourly simulations of 2 m surface temperature, 10 m
wind speed, relative humidity and pressure at capital cities (Shanghai,
Hangzhou, Nanjing, Hefei) in the YRD region with observed data. The
observational data are abstracted from the airport observational data
from NOAA's National Climate Data Center archive (http://www.ncdc.
noaa.gov/oa/ncdc.html). It can be shown that the temperature simula-
tions are very good, including the trend and local maxima and minima
in the entire simulation period with R value of over 0.83. This is consis-
tent with many other works where thermal fluxes are accurately cap-
tured. Simulations of the wind speed also achieve reasonably good
correlation (0.53–0.64). On the other hand, the agreement between ob-
served and predicted humidity data are generally low, with negative
mean bias. Overall, the model performances are consistent with ob-
served data.

In terms of CAMxmodel perforamcne evalution,we presentedmean
bias (MB), normalized mean bias (NMB), fractional bias (FB) and frac-
tional error (FE) of PM2.5 at 41 monitoring sites over the YRD region
during our simulatin period (Table S1). FB and FE values for 39 out of
41 monitoring sites fall within the standards recommended by EPA
(EPA 2007), indicating acceptable model performance for PM2.5. Fig. 2
further shows the scatter plots of observed and simulated averaged
PM2.5 concentrations during pre-lockdown, Level I and Level II preiods.
Results show themodel is overall underpredicting PM2.5 concentrations
and slightly better agreement is observed for during pre-lockdown pe-
riod than lockdown periods. Due to large uncertainties associated with
the estimation of emission reductions during lockdown, therefore, we
used the concept of relative response factor to quantify the impact of
emission reductions on air quality changes to reduce model
uncertainties.

2.3.3. Method for quantifying the impact of lowered human activity on air
quality

Quantifying the air quality changes in response to lowered human
activities and the resulting emission reductions was done using the so
called Brute ForceMethod (BFM) (Burr and Zhang, 2011),where a base-
line scenario is simulated using unadjusted emissions (i.e. those
Table 1
Statistical evaluation of WRF model performance during COVID-19 (2020/1/1–2020/3/
31).

Parameters Site Sim Obs MB RMSE R

T2 (°C) SH 7.9 9.2 −1.2 2.7 0.83
HZ 9.3 9.7 −0.3 2.6 0.86
NJ 6.8 7.9 −1.1 2.9 0.86
HF 6.7 7.4 −0.6 3.3 0.83
NB 8.9 9.8 −0.8 2.9 0.84
Avg 7.9 8.8 −0.8 2.9 0.84

WS10 (ms−1) SH 4.4 4.8 −0.4 1.8 0.64
HZ 3.1 2.5 0.6 1.6 0.62
NJ 3.6 2.6 1.0 1.9 0.53
HF 3.4 3.0 0.4 1.6 0.58
NB 3.7 2.8 0.9 2.0 0.63
Avg 3.6 3.1 0.5 1.8 0.60

RH(%) SH 75.2 75.8 0.1 12.9 0.78
HZ 65.4 76.2 −10.2 17.6 0.76
NJ 70.3 78.3 −7.3 17.3 0.75
HF 68.6 79.5 −10.1 19.6 0.72
NB 74.9 77.1 −1.2 14.4 0.76
Avg 70.9 77.4 −5.8 16.4 0.75
emissions that would have occurred in absence of the COVID-19) and
a reduction scenario is modelled based on the emission reductions esti-
mation (See details in Section 3.4). For emission reductions outside the
YRD region during lockdown, we apply the reduction ratio used by
Wang et al. (2020b). In both cases, the same meteorology are utilised
to drive the photochemical model simulations. Through a comparative
analysis of the scenarios, a relative improvement factor RF for a given at-
mospheric pollutant, resulting from emission reductions, can be calcu-
lated and combined with ground based observations to assess the
changes in air quality associated with those emission reductions caused
due to lowered human activities,

RF ¼ Cb−Csð Þ=Cb ð1Þ

Cd ¼ Co � RF ð2Þ

where Cb is the simulated pollutant concentration in the base case
(μg m−3), Cs is the pollutant concentration in the COVID-19 scenario
(μg m−3), Co denotes the actual observed concentration at the site
(μgm−3) and Cd is the concentration reduction caused by the emissions
reduction (μg m−3). We calculate the relative improvement factor (RF)
for Level I and Level II periods, separately. These factors are applied at
selected monitoring sites to reflect the changes of air quality associated
with COVID-19 induced emission reductions.

The Particulate Source Apportionment Technology (PSAT) coupled
in the CAMx is utilised to quantify the sectoral contributions to PM2.5

from eight source categories (aggregated from detailed source sectors
listed in Table S2) under both baseline and COVID-19 scenarios. These
eight source categories are industrial (IND, including industrial boiler,
kiln, power plants, industrial processes), mobile (MOB, including
onroad, offroad machinery, aircraft), agricultural (AGR), residential
(RES, including cooking, residential combustion, waste treatment),
dust (DST, including construction dust and road dust), biomass burning
(BB), other anthropogenic (OTH, e.g. autorepair, building paints, gas sta-
tion, hospital, etc.), and natural (NAT, including biogenic emissions and
seasalt emissions). Differences in PSAT results under baseline and
COVID-19 scenarios are used to quantify the contributions of PM2.5 re-
ductions associated with emissions reduction in individual sectors due
to the lowered human activities.

http://www.ncdc.noaa.gov/oa/ncdc.html
http://www.ncdc.noaa.gov/oa/ncdc.html


Fig. 3. Relative changes of PM2.5 during Pre-lockdown, Level I and Level II periods in YRD.

Table 2
Changes of meterological parameters at typical cities in the YRD region.

Site 2017–2019(1/1-3-31) 2020(1/1-3-31) 2017–2019(1/1-3-31) 2020(1/1-3-31)

Avg ± Std Max Min Avg ± Std Avg ± Stdev Max Min Avg ± Std

Temperature/°C Pressure/hPa
Shanghai 7.9 ± 4.3 10.6 5.3 9.7 ± 4.2 1024.7 ± 5.8 1028.8 1020.5 1023.8 ± 5.6
Hangzhou 8.6 ± 5.1 11.8 5.6 10.2 ± 5.0 1024.2 ± 5.9 1028.4 1020 1023.4 ± 5.7
Nanjing 6.9 ± 5.7 10.1 3.7 8.5 ± 5.4 1024.6 ± 6.2 1029 1020.2 1023.7 ± 6.1
Hefei 6.8 ± 6.0 10.1 3.5 8.1 ± 5.8 1024.2 ± 6.4 1028.6 1019.6 1022.7 ± 5.8
Wind speed/m·s−1 Relative humidity/%
Shanghai 4.8 ± 2.1 6.5 3.2 4.9 ± 2.0 74.8 ± 17.6 87.8 61.5 75.7 ± 16.8
Hangzhou 2.7 ± 1.4 3.9 1.7 2.5 ± 1.5 75.6 ± 19.4 90 60.6 76.4 ± 18.4
Nanjing 2.7 ± 1.6 4 1.5 2.6 ± 1.6 74.8 ± 20.6 88.6 61.3 78.3 ± 21.7
Hefei 3.0 ± 1.6 4.3 1.9 3.1 ± 1.6 74.1 ± 20.5 88.9 59.2 79.2 ± 21.6
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3. Results and discussions

3.1. Meteorological changes during the COVID-19 period compared with
previous years

We compare the hourlymeteorological data of Shanghai, Hangzhou,
Nanjing and Hefei during January to March from 2017 to 2020, results
are shown in Table 2. As indicated in Fig. S2 and S3, on the whole,
there is no obvious change during COVID-19 in terms of air pressure,
temperature and wind field from January to March 2020 compared
with previous years, except that the surface temperature during Jan
and Feb is somehow higher than previous years.

3.2. Air quality changes before and during the COVID-19 period

Fig. 3 shows the changed concentration of PM2.5 before the lock-
down, Level I response and Level II response periods, respectively.
From the angle of PM2.5, almost all the cities show obvious reduction
during Level I and Level II, especially in the central area of YRD where
the vehicle populations are high. From Fig. S4, it can be shown that
NO2 reduced sharply, especially during Level I period over the YRD
reigon, decrease ratio of SO2 is much lower than NO2, while O3 rebuced
almost all over the YRD region. In general, the level of PM2.5 is fairly low
over the entire YRD region, classified internationally at good air quality
level, as is shown in Fig. S4.

As shown in Fig. 4, the average concentrations of criteria pollutants
at 41 cities in the YRD region from January to March 2020 (except for
the rebound of O3-8h) are much lower compared with 2017–2019 in
the same periods of Pre-lockdown, Level I response, and Level II
Fig. 4. Yearly changes of PM2.5, PM10, CO, NO2, SO2 and O3-8h i
response. Concentrations of PM2.5, PM10, CO, NO2 and SO2 decreased
by 12.3%, 19.6%, 7.8%, 18.5% and 29.3% compared with 2019 before the
epidemic, and 31.8%, 33.7% and 20% 9%, 45.1% and 20.4% reduction re-
spectively during the first-level response period, decrease of 33.2%,
29.0%, 14.7%, 25.9%, 27.2% and 7.6% in the Level II response period. Dur-
ing the Level I response period, NO2 sharply decreased by 45.1%, but O3-
8h rebound was the most obvious, the increasing rate was 20.5%.

From Fig. S5, Table S3 and Table S4, it can be shown that concentra-
tions of PM2.5, PM10, CO, NO2 and SO2 decreasemost significantly during
Level I period, followed by Level II response period. This indicates that
during the lockdown, the stoppage of industrial activities in various en-
terprises, construction sites, eateries have produced conspicuous results
in air pollution reduction. In particular, during Level I period, Zhejiang,
Anhui and Jiangsu has more pronounced air quality improvement com-
pared to Shanghai, suggesting that the response from each provinces
have slightly different level of implementation of lockdown. Moreover
the drop of NO2 is most prominent, e.g. Zhejiang (51.7%), Jiangsu
(44.7%), Anhui (42.8%) and Shanghai (29.5%) respectively, which is re-
lated to the sharp decrease of VKT and the closed mid and small enter-
prises. On the other hand, the rebound of 8-h O3 during the first-level
response is similarly significant: Zhejiang is the highest, followed by
Anhui, Shanghai and Jiangsu with an increase of 28.7%, 22.7%,16.2%
and 12.4% respectively. This can be attributed to the fact that during
the lockdown, there are a large reduction of industrial activities and ve-
hicular traffic leading to a sharp drop of NOx (−29.5% to−51.7%), while
the amount drop of VOC is not as large as NOx, leading to a drop in titra-
tion effect towards ozone. Further policies regarding reducing regional
atmospheric oxidation capacity is in urgent need to takle the increasing
ozone issue in the region.
n 41 cities in the YRD during 1st January - 31st Mar, 2020.
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3.3. Clustering analysis and potential source contributions

To further study the air mass trajectories and source characteristics
of PM2.5 in the YRD during the three stages, PSCF is used to qualitatively
analyse the source regions of PM2.5 pollution. The PSCF threshold of
PM2.5 is set to be 75 μgm−3, which is in linewith the daily average stan-
dard. Fig. 5 shows the results of potential source contribution factors.
The darker the grid colour, the greater contribution of the potential
source area to the PM2.5 concentration in Shanghai. Overall, the poten-
tial contribution areas of PM2.5 affecting Shanghai arewidely distributed
and the sources of pollution are complicated. They are mainly concen-
trated in Anhui, Jiangsu, Zhejiang, Shandong, Henan, Shanxi, Hebei,
and Shanghai. Jiangxi, Hunan, Beijing, Tianjin, Hebei, and other regions.
There is also a minor contribution from the surrounding area. It can be
seen that Shanghai is not only affected by local and nearby cities in
the YRD region, but also affected by long-range transport as well.

Before the epidemic and during Level I response, the potential im-
pact source areas of Shanghai mainly include three categories: 1) The
local potential source areas are mainly from where the recipient city is
adjacent to the neighbouring area, and are distributed in the North
and Northwest of the Shanghai (Xuzhou-Suzhou-Wuxi-Changzhou-
Nantong area), itsWPSCF is above 0.6; 2). The regional potential sources
are located in the southwest and southern cities of the recipient city,
mainly including the impact of the northern cities of Zhejiang Province,
Huzhou and Jiaxing, with the WPSCF is above 0.5; 3). The potential
sources are located in Jiangsu. In the eastern coastal area, the polluted
air mass mainly comes from the north. It is influenced by the northeast
trade winds and the coast current from north to south. The polluted air
Fig. 5. PM2.5 potential source regions:air mass traject
mass landed in Shanghai after detouring at sea, and the WPSCF was
0.3–0.4.

During the Level II period, the WPSCF results show that Shanghai is
mainly affected by the contribution of cities in the region. The regional
potential source is located in the southwestern city of the recipient
city, mainly including Huzhou, a city in the north of Zhejiang Province,
and the WPSCF is above 0.6. YRD is located in the monsoon area, af-
fected by the monsoon climate since March, it is natural that Shanghai
receives more southerly winds (southeast and southwesterly winds),
which has caused polluted air masses. Industries have resumed produc-
tion, and economic activities have brought more man-made sources
after Level II response.

Figs. S6 and Table S5 shows the air mass trajectories of Pre-
lockdown-C1, and indicate their sources are similar. The airmasses orig-
inate from Northern Mongolia and Siberia, and reaches the YRD region
after passing through Beijing, Tianjin and Yellow Sea region. Through
this air mass, it is shown that at all periods in 2019, the concentration
of CO and PM2.5 is higher. This shows that this air mass carried primary
and secondary air pollutants through long distances. This indicates that
in winter season, more large scale regional joint-control is necessary.

3.4. Emissions reduction estimation during the COVID-19

It is important to realise the lockdown coincided with the Chinese
New Year (CNY) holidays, which officially began on the 25th January
2020. It is traditional that many industries and commercial activities
will slow down two or three days before the CNY holidays, labour-
intensive industries take holidays even earlier, which will last until a
ory analysis during different stages in Shanghai.



Table 3
Emission reduction estimations for various emission source sectors.

Level I response period Level II response period

SO2 NOx CO VOCs PM10 PM2.5 SO2 NOx CO VOCs PM10 PM2.5

Industry Stationary source −34% −20% −38% −32% −29% −29% −19% −12% −22% −21% −18% −18%
Industrial processing −33% −29% −32% −51% −36% −36% −19% −18% −23% −28% −19% −19%

Mobile Vehicle exhause −75% −75% −75% −75% −75% −75% −50% −50% −50% −50% −50% −50%
Non-road −90% −90% −90% −90% −90% −90% −50% −50% −50% −50% −50% −50%
Aircraft −80% −80% −80% −80% −80% −80% −60% −60% −60% −60% −60% −60%

Dust Construction dust −90% −90% −50% −50%
Road dust −75% −75% −50% −50%

Solvent usuage Dry cleaning −100% −100%
Vehicle repair −100% −100%
Architectural Coating −100% −100%
Household solvent usage 30% 10%
Hosipital solvent usage 30% 10%

Storage Gas station −50% −30%
Oil storage −50% −30%

Cooking −90% −90% −90% −90% −90% −90%
Residential combustion 10% 10% 10% 10% 10% 10% 0% 0% 0% 0% 0% 0%
Biomass burning 10% 10% 10% 10% 10% 10% 0% 0% 0% 0% 0% 0%
Total emission reduction ratio −26% −47% −39% −57% −61% −46% −15% −29% −25% −37% −36% −27%
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week after the CNY.Meanwhile, migrantworkers return home andpeo-
ple start to visit friends and relatives. However, most people choose to
stay at home during this CNY, which is the biggest difference from the
holiday in previous years. Thus, the Spring Festival in 2020 is almost
covered by the Level I response period.

Officially, the YRD cities started its full lockdown on January 23rd -
25th and remained in place until the end of February. In the meantime,
the production activities of industries and pollutant emissions are not
exactly at full capacity due to the seriousness of the COVID-19 epidemic.

During the full lockdown, almost all medium and small industries
except power plants and large-scale enterprises were closed. We at-
tempt to analyse the activity levels of each respective sector. Power pro-
duction and demand was subsequently significantly reduced as a result
of decline in demand. According to published official data by Anhui
(Anhui Provincial Bureau of Statistics, http://tjj.ah.gov.cn/) and Jiangsu
(JiangSu Energy Regulatory Office of National Energy Administration
Fig. 6. Source contribuitons to PM2.5 at Shanghai, Hefei, Hangzhou and N
of the People's Republic of China, http://jsb.nea.gov.cn/) provinces,
cumulative electricity generation in Anhui and Jiangsu provinces fell
by 19% and 18% in January–February 2020 compared to the same period
in 2019, with the decline in February reaching 27% and 26%, respec-
tively. The manufacturing sector did not actually show major
slowdown: according to the industrial production data published by
the bureau of statistics in the provinces of the YRD, the production of
iron and other non-ferrous materials, medical and pharamaceutical
remained roughly constant. The petrochemical industry, construction
industry, facility manufacturing were strongly affected and hampered
by both the upstream and downstream chain. All other industries
were almost brought to a standstill as a result of these supply chain
movements. The impact of the COVID-19 epidemic on industrial pro-
duction can be seen in the sharp decline of 29% and 32% in industrial
electricity consumption in January–February 2020 in Anhui and
Zhejiang provinces.
anjing during pre-lockdown, Level I and Level II response periods.

http://tjj.ah.gov.cn/
http://jsb.nea.gov.cn/
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In the non-industrial sectors, citizenswere at a restrictedmovement
order and they could not go out to the streets, leading to a sharp decline
in vehicle and public transport. Data published by the bureau of statis-
tics of Anhui and Zhejiang provinces showed that passenger traffic in
Fig. 7. Sectoral contribuitons to PM2.5 during pre-lockd
both provinces dropped significantly by 50% in January–February 2020
compared to the same period in 2019. While traffic flow monitoring
data from Bengbu and Changzhou cities showed a 75% decline in the
first-level response period and a 50% decline during the second-level
own, Level I and Level II response periods in YRD.
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response period, compared to pre-epidemic period. As to the total de-
partures from China's 25 busiest airports (Flightradar 24, https://
www.flightradar24.com/), the decline ratio is 80% and 60%, respectively.
The construction and service industry came to almost a total halt: res-
taurants, construction sites, laundries, automobile service, renovation
and refurbishmentwere all stopped proactively or involuntarily. It is in-
teresting to know that during the epidemic, there is an observable
increase in the use of solvents and volatile organic compound domesti-
cally and in the hospital, plus a small increase in domestic combustion
and biomass burning during the first-level response.

Based on changes of the activity data caused due to the lowered
human activity, we estimated the emissions changes, as shown in
Table 3.

3.5. Quantitative estimates of the contribution of emission reductions to
changes in air quality

3.5.1. Simulation of air quality changes during the COVID-19 lockdown
Changes in averaged PM2.5 concentrations at 41 cities due to COVID-

19 lockdown during Level I and Level II response period are shown in
Table S6. Similar results for changes in SO2, NO2 and O3 concentrations
are shown in Table S7-S9. Results show that because of the restricted
human activities and lowered anthropogenice emissions, PM2.5 concen-
trations are reduced by 25.4% to 48.1% during Level I response period. A
maximum reduction of PM2.5 concentration by 27.3 μg m−3 is found for
the city of Fuyang (located in northern Anhui province) during Level I
response period while a maximum relative PM2.5 reduction by 48.1%
is found for the city of Taizhou (Jiangsu province). During the Level II
respone period when restrictions on normal acitivites were loosened
to some extent, reductions in PM2.5 concentration due to lockdown
range between 15.3% to 36.0%, which is approximately 10% lower than
Level I response period. Concentrations of SO2 and NO2 are also lower
due to reduced human activities. Averaged SO2 and NO2 concentrations
were reduced by 17.9%to41.3% and 32.5%to70.3% during Level I re-
sponse period; 12.0to27.0% and 3.3%to17.0% during Level II response
period. On the contrary, average ozone concentrations generally show
increasing trend due to lockdown. During Level I response period, 36
out of 41 cities show ozone increase with maximum increase by 25.9%
in Shanghai Fuyang (the same city with maximum decrease of PM2.5

concentrations). During Level II response period, 30 out of 41 cities
show ozone increase with maximum increase by 16.8% in Shanghai.
The increases of ozone concentrations, as opposed to derease to other
pollutants, are associated with lowered NOx emissions and thus weak-
ened O3 tritation by NO during lockdown. On average, averaged PM2.5

concentrations cross the YRD region reduced by 27.6% and 19.4% due
to lockdown during Level I and Level II reponse periods while ozone
concentrations increased by 8.3% and 2.3%.

3.5.2. Source apportionment of PM2.5 during COVID-19 lockdown
Fig. 6 shows the contribution from eight source sectors (see defini-

tion in Table S2) plus regional transport (BC) to residual average PM2.5

concentrations for Shanghai, Hangzhou, Nanjing and Hefei during pre-
lockdown, Level I and Level II response periods of the COVID-19 sce-
nario. For all three periods, IND is the dominant PM2.5 contributor. Dur-
ing pre-lockdown period when emissions were at normal level, IND
contributed 27.8% (Shanghai) to 56.8% (Nanjing) of total PM2.5 concen-
trations, followed by DST (9.5% to 22.2%), RES (8.6% to 22.7%), andMOB
(8.0% to 15.0%). Contribution from natural sources were negligible be-
cause of low biogenic emissions during the simulation period. During
Level I response period when emissions from various activities were
reduced, IND still represented the dominant PM2.5 contributor with rel-
ative contribution of 32.2% to 61.1%. However, the absolute contribution
from IND dropped from 17.1 to 34.2 μg/m3 during pre-lockdown period
to 12.6 to 21.1 μgm−3 during Level I response period. Contribution from
DST and MOB were also significantly lowered during Level I response
period, with relative contribution of 2.6% to 7.7% and 3.9% to 8.1%,
repectively, due to restricted construction and travelling. In contrast,
relative contribution from residential sources (RES) are higher during
lockdown periods (12.1% to 28.1% for Level I and 13.7% to 28.5% for
Level II), exceeding contributions from MOB and DST.

Fig. 7 shows the contributions from four major source sectors to
PM2.5 during the three stages over the YRD region. As shown in the fig-
ure, industry and residential contributions to PM2.5 is significant, while
mobile source contribution ismost obvious during pre-lockdown. These
results indicate that re-organisation of the industrial structure, trans-
portation structure is urgently necessary to improve future air quality.

4. Conclusions

During the COVID-19 control period, human activities have been
lowered greatly, causing significant reductions in industrial operations,
VKT, constructions and other activities which further leads to emissions
reduction. During the most stringent Level I response period, the pri-
mary pollutants like SO2, NOx, PM2.5 and VOCs have been reduced by
26%, 47%, 46% and 57%, this caused a decrease of PM2.5 concentrations
by 25.4% to 48.1% over the YRD region. However, the daily PM2.5 still
ranges between 15 and 79 μg m−3 during the lockdown period, and
O3 rebounded by 20.5% simultaneously. Source apportionment results
show that PM2.5 during lockdown periods mainly comes from industry
and residential sources. This indicates that the co-control of PM2.5 and
O3 is quite challenging, more stringent measures like adjustment of
enrgy structure and industrial structure, more stringent regional joint-
control within YRD and even between YRD and northern China areas
should be pushed forward to achive a better air quality.
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